Near-surface heating on Enceladus and the south polar thermal anomaly
نویسندگان
چکیده
منابع مشابه
Near-surface heating on Enceladus and the south polar thermal anomaly
[1] Strike-slip motion is predicted to be a consequence of diurnal tidal stresses in most satellites of the outer solar system. Such motion can lead to near-surface heating through friction or viscous dissipation. Here we discuss the effect of near-surface shear heating on convection in the underlying ice shells of icy satellites. We present models of convection in spherical shells including ti...
متن کاملThermal anomaly in Enceladus’ South Pole subsurface
On November 6, 2011, during the E16 flyby, the Cassini Radar had a unique opportunity to closely observe Enceladus in both its active and passive modes of operation. The E16 swath aimed at about 66°S, close to the active South polar rifted area. In this paper, we show that the radiometry data collected during this flyby revealed brightness temperatures much higher than expected, pointing to a g...
متن کاملVariable Thermal Conductivity and Thermal Radiation Effect on the Motion of a Micro Polar Fluid over an Upper Surface
The intent of this analysis is to explore the influence of thermal radiation paired with variable thermal conductivity on MHD micropolar fluid flow over an upper surface. The novelty of the present model is to consider the fluid flow along an upper horizontal surface of a paraboloid of revolution (uhspr) with the porous medium. This physical phenomenon is described by a set of coupled...
متن کاملMobile lid convection beneath Enceladus’ south polar terrain
[1] Enceladus’ south polar region has a large heat flux, 55–110 mW m , that is spatially associated with cryovolcanic and tectonic activity. Tidal dissipation and vigorous convection in the underlying ice shell are possible sources of heat, however, prior predictions of the heat flux carried by stagnant lid convection range from Fconv 15 to 30 mW m , too low to explain the observed heat flux. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geophysical Research Letters
سال: 2008
ISSN: 0094-8276
DOI: 10.1029/2008gl033725